
IBM TRIRIGA Application Platform
Version 3 Release 4.2

OSLC Integration Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 31.

This edition applies to version 3, release 5, medication 0 of IBM TRIRIGA Application Platform and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2014, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Integrating data by using
OSLC 1

Chapter 2. Integrating as an OSLC
consumer 3
OSLC components 3

OSLC terminology 3
Service providers and service provider discovery 4
OSLC namespaces 5
OSLC operations and resources 5
Resource shapes 6

Shape documents 7
ETags 10
IBM TRIRIGA URIs for OSLC 11

Chapter 3. Working with OSLC
resources 13
Querying OSLC resources 13

Query by using GET or POST methods 13
OSLC query parameters 13

Creating OSLC resources 18
Creating records that are associations of primary
records 18

Updating OSLC resources 19
HTTP PUT method 19
HTTP PATCH method 21

Deleting OSLC resources 23
Working with attachments and binary data 23

OSLC attachment processing 23
OSLC binary data processing 24

Chapter 4. Administering OSLC
resources 27
OSLC security 27

Password changes 27
Expired passwords 28

OSLC logging 28

Chapter 5. Troubleshooting OSLC . .. 29
OSLC explanations for HTTP codes 29

Notices 31
Trademarks 33
Terms and conditions for product documentation.. 33
IBM Online Privacy Statement 34

© Copyright IBM Corp. 2014, 2015 iii

iv © Copyright IBM Corp. 2014, 2015

Chapter 1. Integrating data by using OSLC

Your product applications and some external applications can link and share data
by using Open Services for Lifecycle Collaboration (OSLC) integration. OSLC
makes it easier for tools to work together and share data. By following the rules
and methods that are defined by the specifications, applications can perform
create, request, update, delete operations on the resources of another application.

The OSLC community is a group of software developers and organizations who
are working to standardize how software lifecycle tools share data such as
requirements, defects, test cases, and change history. Version 2.0 of the OSLC
specification is supported for OSLC integration of applications. The specifications
and other OSLC resources are available on the web.

OSLC integration is accomplished between a consumer application and an external
provider application. The OSLC provider application makes its resource data
available to the consumer application through containers, which are known as
service providers. With the resource data made available, the consumer application
can create links between its data and the resource data of the provider application.
You can configure and enable any application in your product to act as an OSLC
consumer application.

Consumer applications can find the URIs that identify the resources in the
provider application and use those URIs to request query results, for example. For
IBM® TRIRIGA®, service providers are available at http://yourserver/oslc/sp.

The URIs used in OSLC requests must be URL encoded.

© Copyright IBM Corp. 2014, 2015 1

2 © Copyright IBM Corp. 2014, 2015

Chapter 2. Integrating as an OSLC consumer

Your application, an OSLC consumer, can be configured to support two interaction
types: query and creation. The resource links are obtained by the consumer
application from the provider application.

The following figure illustrates the interactions between the consumer and
provider applications. As an OSLC consumer, the application can query or create
resources in the provider application and retain the links to those resources. With
the links, the consumer application can make requests to the provider application
to query, update, or delete the resources.

Resource links

OSLC consumer
application
(for example, IBM TRIRIGA
Anywhere)

Resource data

OSLC provider
application
(for example, IBM TRIRIGA)

Creation factory

Query capability

Resource link returned

Consumer application updates or deletes
a resource using the resource link

OSLC components
Service providers, resources, and ETags provide details that you need to consume
IBM TRIRIGA data through OSLC.

OSLC terminology
Definitions are provided for IBM TRIRIGA OSLC terms.

consumer application
An application that uses the data in the central data warehouse for a
specific business need.

creation factory
A URI that is used to create new resources by using HTTP POST.

provider application
In the context of OSLC, an application that makes its resource data
available to the consumer application through containers that are called
service providers. IBM TRIRIGA is a provider application for the IBM
TRIRIGA Anywhere mobile applications.

provider record
A record that identifies the provider application and contains definitions
for one or more OSLC interactions between a consumer application and
the provider application.

© Copyright IBM Corp. 2014, 2015 3

public URI
The root URI that is used to access the OSLC provider application.

query capability
A base URI for forming query resource URIs.

resource
In the context of OSLC, a network data object or service that can be
identified by a URI.

Resource Description Framework (RDF)
A framework for representing information on the web.

resource shape
A specification that defines a fixed list of properties for the resource,
expected data types and values, and validation rules for new or changed
resources.

resource type
In the context of OSLC, the type of data that is linked between integrated
applications, for example, a work task status change request.

service provider
In the context of OSLC, a container of resources that is hosted by a tool or
product to enable the use of the resources.

shape document
A record that describes the resource shape and makes it available through
the URI.

Service providers and service provider discovery
A service provider is a container or collection of resources that is hosted by a tool or
product. Service providers support the grouping of similar resources, such as
defects or tasks, that can be configured for integration.

A service provider in an OSLC provider application contains the resource data that
can be linked to consumer application data through integration of the applications.
The resource data in IBM TRIRIGA can be in multibyte languages. To integrate a
consumer application and a provider application, the consumer must discover or
identify the service providers that are available in the provider application.

In IBM TRIRIGA, a service provider can be simple or as complex as an application
that contains many modules and business objects. You can discover the service
providers in IBM TRIRIGA by using the following methods:
v From Tools > System Setup > Integration > OSLC Manager

v By using the URI: http://yourserver/oslc/sp

With each method, a list of service providers is returned. The following example
shows the URI for employees: http://yourserver/oslc/sp/Employee.

The URI points to the service provider document that is in RDF/XML format.
RDF/XML format is supported for shape documents, service providers, resources,
and resource data. The consumer application can use the service provider form to
determine which resources are available and what services they support, such as
query or creation.

The OSLC service provider supports the OSLC creation factory and query
capability operations that provide consumers with the URI to create or search

4 © Copyright IBM Corp. 2014, 2015

resources that are supported by the service provider. The service provider
document describes the available resources and the namespace mappings, and the
operations that are supported by the service provider for those resources.

In the following sample response, the OSLC service provider is referred from the
rdfs:member property. The service provider document for the domain shows the
URI for work task:
<rdf:RDF>
<rdf:Description rdf:about="http://yourserver/oslc/sp">
<rdfs:member rdf:resource="http://yourserver/oslc/sp/WorkTask">
</rdf:Description>
</rdf:RDF>

OSLC namespaces
OSLC defines common namespaces. The prefixDefinition property shows all the
prefix-to-namespace mappings that the service provider uses to describe the
resources that it manages.

The namespace for a property must end with a # or /. For example,
http://yourserver/ns/property#.

The following table shows a sample of OSLC namespaces:

Prefix Namespace

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

oslc http://open-services.net/ns/core#

dcterms http://purl.org/dc/terms/

asset http://open-services.net/ns#

foaf http://xmlns.com/foaf/0.1/

rdfs http://www.w3.org/2000/01/rdf-schema#

rr http://jazz.net/ns/ism/registry#

spi http://jazz.net/ns/tririga

The following excerpt from the service section of the service provider document
shows the OSLC and RDF namespaces:

<oslc:ServiceProvider rdf:about="http://yourserver/oslc/sp/WorkTask">
<oslc:prefixDefinition>

<oslc:PrefixDefinition>
<oslc:prefixBase rdf:resource="http://open-services.net/ns/core#"/>
<oslc:prefix>oslc</oslc:prefix>

</oslc:PrefixDefinition>
</oslc:prefixDefinition>

<oslc:prefixDefinition>
<oslc:PrefixDefinition>

<oslc:prefixBase rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
<oslc:prefix>rdf</oslc:prefix>

</oslc:PrefixDefinition>
</oslc:prefixDefinition>

OSLC operations and resources
The OSLC service provider supports the creation factory and query capability
operations for the resources that are available in the service provider document. A
creation factory provides the oslc:creation creation URI that you use to create
new resources by using HTTP POST. You use the oslc:queryBase query URI to

Chapter 2. Integrating as an OSLC consumer 5

select a resource collection that is managed by the service provider. When the
resource is obtained, either by query or creation, the resource can be updated or
deleted.

Creation factory operation

If the resource supports creation, there can be one creation factory operation. The
following excerpt from a service provider document shows the creation factory
operation, the URL for the resource shape, and the URL for the creation resource
operation that creates the shape.
<oslc:creationFactory>
<oslc:CreationFactory>
<oslc:resourceType rdf:resource="http://jazz.net/ns/tririga#WorkTask"/>
<oslc:resourceShape rdf:resource="http://yourserver/oslc/shapes/WorkTask"/>
<oslc:creation rdf:resource="http://yourserver/oslc/so/WorkTask"/>
<oslc:label>Create WorkTask</oslc:label>
<dcterms:title>OSLC creation factory for WorkTask</dcterms:title>

</oslc:CreationFactory>
</oslc:creationFactory>

......

Query capability operation

The query URI is oslc:queryBase, and the following example shows a search for a
work task by using the request: <oslc:queryBase rdf:resource="http://
yourserver/oslc/spq/oslcwodetail"/>:

<oslc:queryCapability>
<oslc:QueryCapability>

<oslc:resourceType rdf:resource="http://jazz.net/ns/tririga#WorkTask"/>
<oslc:queryBase rdf:resource="http://yourserver/oslc/so/WorkTask"/>
<oslc:labelQuery>WorkTask</oslc:label>
<dcterms:taskname>OSLC query capability for WorkTask</dcterms:taskname>

</oslc:QueryCapability>
</oslc:queryCapability>

When you define an OSLC resource shape, all of the queries for the resource are
available through the service provider. The queries are made available with OSLC
query capabilities.

An OSLC resource shape is defined by a report that is defined in the IBM
TRIRIGA Report Manager. The resource shape uses the report as a template to
define the properties available for your resource. These properties are then
returned when you run a query capability.

Each query capability contains a property that is named query base that you use to
apply extended criteria to your resource. These criteria make it possible to
predefine filters for the same shape. The Query Base field in query capability
holds the name of a query that is compatible with the query that the resource is
defined on. This query, if defined, is used for filtering. You can use TRIRIGA
parameters in the query, such as $$USERID$$, $$RECORDID$$, or
$$PARENT::SECTIONAME::FIELDNAME$$. The query base is a list and the contents of
the list change when the resource changes. For example, the MyWorkTask query
returns a list of work tasks that are assigned to the user who makes the query
request.

Resource shapes
A resource shape is a Resource Description Framework (RDF) file that provides a
description of the resource data types that can be used in an interaction. The shape
contains a list of attributes of the resource.

6 © Copyright IBM Corp. 2014, 2015

You can view the RDF for a resource in the Preview tab of the resource form.

A resource shape is similar to an XML schema in the way that it defines the data
structure of the resource.

Shape documents
A shape document in OSLC is an electronic way to see what a resource looks like
including all of its dependencies, attributes, and properties. For example, a work
task shape document lists the work task resource details.

Shape documents cover all resources, including assets, companies, purchase orders,
and work tasks. A shape document also shows what is required. The resource
shape document can include links to the shape documents for the child objects.
RDF/XML is used as the format for the shape document.

A resource shape displays properties, actions, and the linked resources that are
defined for the resource.

In IBM TRIRIGA, when you create a new resource with the OSLC Resource form,
you must specify the module, business object, and a business object query, or you
must select a module and multi-business object query. Begin by creating the query
in IBM TRIRIGA. When you create the display columns in the query, you are
defining the initial properties. You can use the Import All Fields action in the form
to import the display columns from the query as resource properties. The import
process attempts to set the IBM TRIRIGA fields to the corresponding OSLC
property values, such as read-only. You can modify the fields after the import and
you can remove properties. The dcterms:identifier property creates the record ID
during the import process. ThetriRecordIdSY field is required if you plan to
update the resource.

The following table shows how IBM TRIRIGA field types map to OSLC property
value types:

IBM TRIRIGA field type OSLC property value type

Boolean OslcPropertyValueType.Boolean

Business Object OslcPropertyValueType.String

Classification OslcPropertyValueType.String

Classification Rollup OslcPropertyValueType.Decimal

Color OslcPropertyValueType.String

Note: The URI must be URL encoded when
you filter for color fields. Replace the #
symbol with %23.

Control Number OslcPropertyValueType.String

Date OslcPropertyValueType.String

Date and Time OslcPropertyValueType.String

Duration OslcPropertyValueType.String

Financial Rollup OslcPropertyValueType.Decimal

Image OslcPropertyValueType.String

Label Only OslcPropertyValueType.String

List OslcPropertyValueType.String

Number OslcPropertyValueType.Decimal

Chapter 2. Integrating as an OSLC consumer 7

IBM TRIRIGA field type OSLC property value type

Password OslcPropertyValueType.String

System Read Only OslcPropertyValueType.String

Text OslcPropertyValueType.String

Time OslcPropertyValueType.String

UOM OslcPropertyValueType.String

Url OslcPropertyValueType.String

A linked resource points to the resource to be linked. It provides the association
strings describe the relationship. The following are examples of association strings:
Has Asset, Manages, and Assigned To. You also can add a linked resource to a
property. A linked resource is allowed, and is optional, for locator fields and smart
sections.

Example: Work task shape document

A work task shape document lists all of the properties, attributes, and
dependencies of a work task. The following code shows an excerpt from a work
task shape document named WorkTask. Four properties are included in this
resource shape document but the document can have many more properties listed.
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:spi="http://jazz.net/ns/tririga/property#"
xmlns:dcterms="http://purl.org/dc/terms/">

<oslc:ResourceShape rdf:about="http://yourserver/oslc/shapes/WorkTask">
<oslc:property>
<oslc:Property>
<oslc:representation rdf:resource="http://open-services.net/ns/core#Either"/>
<oslc:readOnly>false</oslc:readOnly>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Exactly-one"/>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"
>ID</dcterms:title>
<oslc:name>RecordInformation.triIdTX>/oslc:name>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/tririga/property#triIdTX"/>

</oslc:Property>
</oslc:property>
<oslc:property>
<oslc:Property>
<oslc:representation rdf:resource="http://open-services.net/ns/core#Either"/>
<oslc.readOnly>false</oslc:readOnly>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Exactly-one"/>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>
<oslc:defaultValue>TIMESTAMP</oslc:defaultValue>
<dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"
>Planned Start</dcterms:title>
<oslc:name>RecordInformation.triPlannedStartDT</oslc:name>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/tririga/property#triPlannedStartDT"/>

</oslc:Property>
</oslc:property>
<oslc:property>
<oslc:Property>
<oslc:representation rdf:resource="http://open-services.net/ns/core#Either"/>
<oslc:readOnly>true</oslc:readOnly>
<oslc:occurs rdf:resource="http//open-services.net/ns/core#Exactly-one"/>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
<dcterms:title rdf:datatype="http//www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"
>Actual Total Cost</dcterms:title>
<oslc:name>RecordInformation.triActualTotalCostNU</oslc:name>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/tririga/property#triActualTotalCostNU"/>

</oslc:Property>
</oslc:property>
<oslc:property>
<oslc:Property>
<oslc:representation rdf:resource="http://open-services.net/ns/core#Either"/>
<oslc:readOnly>false</oslc:readOnly>
<oslc:occurs rdf:resource="http//open-services.net/ns/core#Exactly-one"/>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<dcterms:title rdf:datatype="http//www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"
>Task Name</dcterms:title>
<oslc:name>RecordInformation.triNameTX</oslc:name>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/tririga/property#trNameTX"/>

8 © Copyright IBM Corp. 2014, 2015

</oslc:Property>
</oslc:property>
<dcterms:title>WorkTask</dcterms:title>

</oslc:ResourceShape>
</rdf:RDF>

Number fields:

An attribute for scale is provided for number fields in OSLC. Scale is the number
of digits to the right of the decimal for the number.

If the number has a custom display mask, the scale value that is returned is based
on the custom display mask. If the display mask is missing, and there is no unit of
measure (UOM) set, the value of two is returned by default. If there is a UOM set
for the number field but there is no display mask set for the field, the scale of the
UOM display mask is returned. The characters 0 and # in the display mask are
considered when the scale is determined.

Example: Scale in number fields

The following example shows the returned results with a scale value of 3:
<oslc:property>
<oslc:Property>

<spi:scale> 3 </spi:scale>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#decimal" />
<oslc:readOnly> false </oslc:readOnly>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one" />
<dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral">
Cost </dcterms:title>
<oslc:name> triCostNU </oslc:name>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/spi#triCostNU" />
</oslc:Property>
</oslc:property>

List and UOM properties:

You can view the values that are allowed for list and unit of measure (UOM)
properties.

A list or UOM property has an oslc:allowedValues element that has a resource
URI. The URI returns a list of available values that can be used for that list or
UOM property.

Example

The following example shows a property with the oslc:allowedValues element,
and then the list of allowed values that results from the URI in the element:
<oslc:property>
<oslc:Property>

<oslc:defaultValue>Japan Yen</oslc:defaultValue>
<oslc:readOnly>false</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
<oslc:usage rdf:resource="http://jazz.net/ns/ism/datatypes/
smarter_physical_infrastructure#uom" />
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one" />
<oslc:name>exampleUOM</oslc:name>
<dcterms:title rdf:datatype="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral">
exampleUOM</dcterms:title>
<oslc:allowedValues rdf:resource="http://yourserver/oslc/system/list/

Chapter 2. Integrating as an OSLC consumer 9

resourceName/spi:exampleUOM" />
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/spi#exampleUOM" />
</oslc:Property>

</oslc:property>

<rdf:RDF>
<oslc:allowedValues rdf:about="http://yourserver/oslc/system/list/
resourceName/spi:exampleUOM">
<oslc:allowedValues>
<oslc:allowedValues>

<oslc:allowedValue>US Dollars</oslc:allowedValue>
<oslc:allowedValue>Swedish Krona/Kronor</oslc:allowedValue>
<oslc:allowedValue>Brazilian Real</oslc:allowedValue>
<oslc:allowedValue>Russian Ruble</oslc:allowedValue>
<oslc:allowedValue>Norwegian Krone</oslc:allowedValue>
<oslc:allowedValue>New Zealand Dollars</oslc:allowedValue>
<oslc:allowedValue>United Kingdom Pounds</oslc:allowedValue>
<oslc:allowedValue>Thai Baht</oslc:allowedValue>
<oslc:allowedValue>Canadian Dollars</oslc:allowedValue>
<oslc:allowedValue>Egyptian Pound</oslc:allowedValue>
<oslc:allowedValue>Euro</oslc:allowedValue>
<oslc:allowedValue>Polish Zloty</oslc:allowedValue>
<oslc:allowedValue>Korea Won</oslc:allowedValue>
<oslc:allowedValue>Hungarian Forint</oslc:allowedValue>
<oslc:allowedValue>South Africa Rand</oslc:allowedValue>
<oslc:allowedValue>Switzerland Francs</oslc:allowedValue>
<oslc:allowedValue>Japan Yen</oslc:allowedValue>
<oslc:allowedValue>Australia Dollars</oslc:allowedValue>
<oslc:allowedValue>Israeli New Shekel</oslc:allowedValue>
<oslc:allowedValue>Danish Krone</oslc:allowedValue>
<oslc:allowedValue>Indian Rupees</oslc:allowedValue>
<oslc:allowedValue>clIndiaRupee</oslc:allowedValue>
</oslc:allowedValues>

</oslc:allowedValues>
</oslc:allowedValues>
</rdf:RDF>

ETags
An ETag (entity tag) is an HTTP header that is used to validate that the client
(such as a mobile device) has the most recent version of a record. When a GET
request is made, the ETag is returned as a response header. The ETag also allows
the client to make conditional requests.

In addition to supporting the basic update methods of HTTP PUT and HTTP
PATCH, OSLC also supports conditional updates. Conditional updates use HTTP
entity tags and If-Match headers to validate whether clients have the most current
entity for a resource. This process is used to detect bad updates and race
conditions. For example, if two clients load the same resource, OSLC sends the
ETag header with the response.

The ETag value is the date and time of the last update to the resource. The client
stores the ETag header value and sends it as part of HTTP If-Match header for a
subsequent update request. The server evaluates the If-Match header and
determines whether the client has an old version or the most recent version of the
resource. If the server determines that the client version is old, it sends back an
HTTP 412 precondition failed response. The client gets the resource again and
submits a request that is based on the updated ETag. However, if the server
determines that the client version is the most recent version, the update is
implemented unless any business validation or database constraints are found.

The client can also submit the request without the If-Match header or with the
If-Match header value set to * (asterisk). Submitting this request is semantically

10 © Copyright IBM Corp. 2014, 2015

equivalent to having no If-Match header in the update request. In both cases, the
update is unconditional. If the resource that is referred by the URI exists and no
business validation or database constraints are found, the update is implemented.

IBM TRIRIGA URIs for OSLC
The URIs you use to connect to IBM TRIRIGA by using OSLC are unique.

You use the following URIs to connect with IBM TRIRIGA:

OSLC component Description

System resource page http://yourserver/oslc

Login http://yourserver/oslc/login

Logout http://yourserver/oslc/logout

Creation factory http://yourserver/oslc/so

Query capability http://yourserver/oslc/spq

Query details http://yourserver/oslc/so

Resource shape http://yourserver/oslc/shapes

To access the resource shape page, use
http://yourserver/oslc/shapes/
ResourceShapeName

Service provider http://yourserver/oslc/sp

Chapter 2. Integrating as an OSLC consumer 11

12 © Copyright IBM Corp. 2014, 2015

Chapter 3. Working with OSLC resources

You use HTTP methods to define how users create, query, update, or delete OSLC
resources.

IBM TRIRIGA security is applied to all data activities. A user cannot create, query,
update, or delete a record without appropriate security access.

Querying OSLC resources
You can query OSLC resources by using the HTTP GET method or the HTTP POST
method. You change the query parameters to control how users search resources.
OSLC defines a lightweight query syntax that is based on the SPARQL standard to
query resources.

Query by using GET or POST methods
When you query OSLC resources, you can use either the HTTP GET method or
HTTP POST method.

When you query OSLC resources by using HTTP GET, you specify the query
parameters in the URI. If the URI is longer than 2000 characters, you must query
by using HTTP POST, instead of HTTP GET. You can also use HTTP POST if the
URI is less than 2000 characters but still long, or if you want to hide the query
parameters so that they are not displayed in the URI.

When you query by using HTTP POST, you set the HTTP header Content-Type to
application/x-www-form-urlencoded, send the URI without parameters, and
specify the query parameters in the HTTP request body.

Example: Query by using HTTP GET

The following is an example of a query by using HTTP GET. All of the query
parameters are displayed in the URI.
http://yourserver/oslc/spq/WorkTaskQuery?oslc.select=
spi:triNameTX,spi:RCA{spi:triRCARemedyCL}&oslc.where=
spi:RCA{spi:triRCARemedyCL="Clean"}&oslc.orderBy=%2Bspi:triNameTX

Example: Querying using HTTP POST

The following is an example of the same query by using HTTP POST. The URI
becomes shortened.
http://yourserver1/oslc/spq/WorkTaskQuery

HTTP body

The HTTP request body contains all of the query parameters.
oslc.select=spi:triNameTX,spi:RCA{spi:triRCARemedyCL}&oslc.where=
spi:RCA{spi:triRCARemedyCL="Clean"}&oslc.orderBy=%2Bspi:triNameTX

OSLC query parameters
The OSLC query parameters provide options for how OSLC resources are queried.
For example, the oslc.orderBy parameter defines the order of query results. The

© Copyright IBM Corp. 2014, 2015 13

OSLC HTTP query parameters that are supported are oslc.properties,
oslc.where, oslc.orderBy, oslc.select, oslc.pageSize, and pageno.

If a property is not in the General section of a form, you must specify the section
name for the property, in the format sectionname#fieldname. For example,
triDetails#triTaskTypeCL.

oslc.properties parameter

The oslc.properties query parameter specifies the list of properties for an OSLC
resource. The properties can be from the resource itself or from a linked resource.
It is used to get a partial representation of the resource. The oslc.properties
parameter is not applicable to collection resources. A collection resource is an
OSLC resource that has other OSLC resources as members.

Example: Requesting attributes

The following request example specifies that the values for the shortTitle and
isTask attributes are returned in the results:
http://yourserver/oslc/so/WorkTask/
337?oslc.properties=oslc:shortTitle,spi:isTask

Example: Requesting attributes from linked resources

The following request specifies that the value for the name of the customer
organization is returned in the results:
http://yourserver/oslc/so/WorkTask/
13353622?oslc.properties=*,spi:triCustomerOrgTX{spi:triNameTX}

This request produces the following results:
{

spi:triNameTX: "WorkTask"
spi:triStatusCL: "Draft"
spi:triIdTX: "1027019"
-spi:triCustomerOrgTX: {

spi:triNameTX: "Company 01"
rdf:about: "http://yourserver/oslc/so/OrganizationRS/12877121"

}
rdf:about: "http://yourserver/oslc/so/triWorkTaskRS/13353622"
-trira:action: [10]

0: "triDelete"
1: "triInvalidUploadHidden"
2: "triIssue"
3: "triBaseline"
4: "triApplyTemplate"
5: "triCopy"
6: "triPlanHidden"
7: "triSave"
8: "triSaveAndClose"
9: "triTemporaryTemplate"

-prefixes: {
oslc: "http://open-services.net/ns/core#"
rdf: "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
trira: "http://jazz.net/ns/tririga#"
dcterms: "http://purl.org/dc/terms/"

}
}

14 © Copyright IBM Corp. 2014, 2015

oslc.where parameter

The oslc.where parameter specifies the WHERE clause for filtering the result set of
a query. For example, you want to see a list of work task OSLC resources that were
created within a time range and that are approved by management. You can filter
by linked resources by using the oslc.where parameter. For example, you might
want to filter people according to the name of the manager that the people report
to.

The OSLC WHERE clause supports the following basic comparison operators:

Symbol Description

= Equality

v "value" = Equal to

v "%value" = Ends with

v "value%" = Starts with

v "%value%" = Contains

Note that if you manually type the URI with
this % symbol as part of the search, you
must encode the symbol as follows:

"%25value"

!= Inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

If you need to filter for null or not null, you enter the word null after the symbol.

Requirements for the oslc.where parameter

Dates are expressed in ISO 8601 format. For Date and Time field types,
milliseconds show if the field has a nonzero millisecond value.

The OSLC specification supports and as the Boolean operator between Boolean
expressions. The Boolean operator or is not supported. In the following example,
the literal value for status is in quotation marks as the status property has a data
type of string. The quantity value does not have quotation marks because it is a
decimal data type. Integers and Boolean values also do not require quotation
marks. For example, spi:status="Closed" and spi:quantity>10.5 and
spi:active=true where spi:active has a Boolean data type.

The OSLC specification supports or implicitly within a single property by using the
in operator. For example, to see all work tasks that are in either Issued or Active
status, use the query spi:status in ["Issued","Active"]

Example: Searching for work tasks that were created within a
time range and are approved

The following clause lists work task resources that were created within a specific
time range:

Chapter 3. Working with OSLC resources 15

spi:status="Approved" and dcterms:created>"2003-07-07T09:50:00-04:00" and
dcterms:created<="2004-07-07T09:50:00-04:00".

Using the oslc.orderBy parameter to specify the sort order

The oslc.orderBy parameter defines how the results of a query are ordered. For
example, a list of work tasks can be ordered by date or by ID.

To arrange work tasks with the creation date in ascending order and the estimated
duration in descending order, use the following oslc.orderBy parameter:
+dcterms:created,-spi:estimatedDuration. The + indicates an ascending sort
order and the - indicates a descending sort order. The values are separated by
commas. The following oslc.orderBy parameter is not valid because there is no
default sort order in OSLC query syntax: dcterms:created,-
spi:estimatedDuration. There must be an explicit + or - with the property name.
The oslc.orderBy parameter also supports nested properties, for example,
dcterms:creator{+foaf:name}. In a real URL, + and - do not work. You must use
%2B and %2D in the URL instead.

Example: Sorting based on linked resources

You can use the fields of linked resources as the order criteria, to sort the parent
records and the linked resources inside of parent records.

For example, there might be two main objects that are named M1 and M2. M1 has
two linked resources that are named L1 and L3 and M2 has the linked resources
L2 and L4. If you sort the main objects in ascending order, without taking the
linked resources into consideration, the results are M1, M2. If you sort the main
objects in descending order, the results are M2, M1. However, because there are
multiple linked resources for the objects, when you sort in ascending or
descending order, the linked resources are also sorted. L1 and L3 are sorted within
M1, L2 and L4 are sorted within M2.

oslc.select parameter

The oslc.select parameter requests a partial resource representation of collection
member resources. The oslc.select parameter always applies to a collection
resource. You specify the list of properties to include in the request. The properties
that you select can be from the resource itself or from a linked resource.

Example: Partial resource request

The oslc.select parameter provides a comma-separated list of qualified property
names. The oslc.prefix parameter is not supported.

The following request is an example of a partial resource request:

oslc.select=oslc:shortTitle,dcterms:creator

Example: Properties from referenced resources

With the oslc.select parameter, you can select properties from referenced
resources. To retrieve information such as the name of the creator, you specify the
SELECT statement as

oslc.select= oslc:shortTitle,dcterms:creator{foaf:name}.

16 © Copyright IBM Corp. 2014, 2015

The foaf:Person resource is the name of the person that is specified in the creator
property value. To get all properties from the resource, you can use oslc.select=*.
The same syntax can be applied to the oslc.properties parameter when you
search for an OSLC resource.

Example: Properties from linked resources

With the oslc.select parameter, you can select properties from linked resources.
To retrieve information such as the value for the name of the customer
organization, you specify the SELECT statement as
http://yourserver/oslc/spq/WorkTaskQC
?oslc.select=*,spi:triCustomerOrgTX{spi:triNameTX}
&oslc.where=spi:triCustomerOrgTX!="null"

This SELECT statement gives the following response:
{

-rdf:members: [1]
-0: {

spi:triNameTX: "WorkTask"
spi:triStatusCL: "Draft"
spi:triIdTX: "1027019"

-spi:triCustomerOrgTX: {
spi:triNameTX: "Company 01"
rdf:about: "http://yourserver/oslc/so/Organization/12877121"

}
rdf:about: "http://yourserver/oslc/so/WorkTask/13353622"

-trira:action: [10]
0: "triDelete"
1: "triInvalidUploadHidden"
2: "triIssue"
3: "triBaseline"
4: "triApplyTemplate"
5: "triCopy"
6: "triPlanHidden"
7: "triSave"
8: "triSaveAndClose"
9: "triTemporaryTemplate"

}
rdf:about: "http://yourserver/oslc/spq/WorkTask"
-prefixes: {

oslc: "http://open-services.net/ns/core#"
rdf: "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
spi: "http://jazz.net/ns/tririga#"
dcterms: "http://purl.org/dc/terms/"

}
}

oslc.pageSize parameter

The oslc.pageSize parameter specifies the number of results the server is to return
per page. For example, oslc.pageSize=20 causes the query to return 20 results per
page.

pageno parameter

The pageno parameter specifies the page that the server is to return. For example,
pageno=3 causes the query to return only the data for the third page.

Chapter 3. Working with OSLC resources 17

Creating OSLC resources
You use the HTTP POST method to create an instance of an OSLC resource. You
can then share the resource with other applications, and update the resource by
using the PUT, PATCH, or MERGE methods.

About this task

The OSLC client sends a JSON document that conforms to the shape of the
resource as published in the shape document. The data is sent to OSLC in the
HTTP request body in JSON format and the HTTP header Content-Type is set as
the MIME type application/json. If the request is processed successfully, the
OSLC client receives a location HTTP header with the URI of the newly created
resource. If you want to see the properties of the newly created resource, you can
include a properties header in the request and indicate which properties you want
to see. A header property that is named Properties is returned with the specified
properties.

When you send a create request, you can include the transaction ID in the HTTP
request header. The transaction ID must be unique across all client applications.
OSLC saves the transaction ID status in the database when the request is
completed. If you submit a request with a transaction ID, OSLC checks whether
the transaction exists in the database. If the transaction does exist, OSLC does not
run the request. It returns an error that indicates that the request was not
completed because the transaction ID exists. The following is an example header
with the transaction ID specified:
Accept: application/rdf-xml
transactionid: 6001
Content-Type: application/json;charset=utf-8

If the request is processed successfully, the OSLC client receives the following
response:
201 Created
Location: http://yourserver/oslc/so/WorkTask/10269
ETag: 1376596202470

If an action is passed in, the action must be a valid action for the current state of
the record. For example, if the current state of the record is Draft, Save is often a
valid action. The action is called after the record is created.

In the query result page (oslc/spq), if oslc.select includes a wildcard (*), or in
the query details page (oslc/os), if no oslc.properties parameter is provided, the
result includes all actions that can be performed for each record that is retrieved.
The form of the action is, "tririga:action":["action1","action2",...].

OSLC requests can fail for various reasons, such as business validation,
authentication, or authorization. For example, the OSLC client might receive a 400
Bad Request error followed by the HTTP body that contains the details of the error.

Creating records that are associations of primary records
You can create linked dependent resources for primary records.

About this task

You can add associated dependent records to a primary record. The linked
resource determines the association and the associated resource.

18 © Copyright IBM Corp. 2014, 2015

Example: Creating a purchase order with two purchase order line
items

The following method creates a purchase order resource with two purchase order
line item resources. The name of the linked resource is HasPOLineItem.
{

"spi:action":"Create Draft (triCreateDraft)",
"spi:triNameTX":"oslcPO",
"trirldr:HasPOLineItem":
[

{
"spi:action":"Create (triCreate)",
"spi:triNameTX":"POLineItem1"

},
{

"spi:action":"Create (triCreate)",
"spi:triNameTX":"POLineItem2"

}
]

}

If the request is processed successfully, the OSLC client receives the following
response:
201 Created
Location: http://yourserver/oslc/so/PO/10269
ETag: 1376596202470

Updating OSLC resources
You can use the HTTP PUT method to replace an OSLC resource and the HTTP
POST with a PATCH override to partially update an OSLC resource.

An HTTP PUT completely replaces the data in the resource with the properties in
the request.

An HTTP POST with an x-method-override of PATCH replaces a local resource
property with the content in the request.

An HTTP POST with an x-method-override of PATCH and a PATCHTYPE of
MERGE finds and matches the local resource elements from the request with the
elements on the server. Depending on whether a match was found, the local
resource elements are updated or inserted. A local element is never deleted from
the local resource property.

When you send an update request, you can include the transaction ID in the HTTP
request header. The transaction ID must be unique across all client applications.
OSLC saves the transaction ID status in the database when the request is
completed. If you submit a request with a transaction ID, OSLC checks whether
the transaction exists in the database. If the transaction does exist, OSLC does not
run the request. It returns an error that indicates that the request was not
completed because the transaction ID exists. The following is an example header
with the transaction ID specified:
Accept: application/rdf-xml
transactionid: 6001
Content-Type: application/json;charset=utf-8

HTTP PUT method
The HTTP PUT operation is used for a full replacement of an OSLC resource. The
PUT method updates both literal properties and local resource properties, and it
deletes any local resource properties that are not included in the request.

Chapter 3. Working with OSLC resources 19

The following rules apply when you use the PUT method to replace an OSLC
resource:
v All literal properties that are specified in the request document are updated. Any

literal property that is not specified as part of the request is not impacted
explicitly. However, it can be implicitly impacted by the business logic that is
attached to the resource. This rule is the same as when you use the PATCH
method to update a resource.

v All local resource properties are replaced by corresponding property values from
the request. If the resource property is not included in the request, the
corresponding resource is deleted. If the resource property is included, its value
replaces the value in the server.

v Reference resources cannot be updated explicitly. However, you can update
properties that refer to the resource, and the properties follow the update model
of literal properties. This rule is the same as when you use the PATCH method
to update a resource.

In the following examples, the work task resource has one literal property,
taskname, and one resource property parts. The parts property points to the local
resource parts and is associated with two parts records. If a PUT request contains
the taskname property and no parts property, the task name is updated and the
parts data is deleted.

Example: Updating a literal property

The following method updates the literal property, taskname:
PUT http://yourserver/oslc/so/WorkTask/123

{
"dcterms:taskname": "Check-out Leaking – Modified for Test"

}

If the request is processed successfully, the OSLC client receives the following
response:
204 No Content
ETag: 1376596202470

The task name is changed to Check-out Leaking – Modified for Test. Because the
parts data was not included in the method, the parts records are deleted.

Example: Updating a local resource property

The following method updates the resource property, parts:
PUT http://yourserver/oslc/so/WorkTask/123

{
“spi:parts”: [

{
“spi:partsid": "0000000067",

"spi:quantity": 5
}

]
}

If the request is processed successfully, the OSLC client receives the following
response:
204 No Content
ETag: 1376596202470

20 © Copyright IBM Corp. 2014, 2015

A search is made for a parts record with the ID 0000000067. If such a parts record
exists, it is updated. If no match is found, a new parts record is created. All other
parts data for this work task resource is deleted. Because the taskname property is
not included in the method, the task name is not part of the request and the value
is unaffected.

HTTP PATCH method
PATCH is used for a partial update of an OSLC resource. A PATCH does not delete
any local resource properties that are not included in the request. The PATCH
request is sent by a POST method with the x-method-override header set to
PATCH.

The following rules apply when you use a PATCH to replace an OSLC resource:
v All literal properties that are specified in the request document are updated. Any

literal property that is not specified as part of the request is not impacted
explicitly. However, it can be implicitly impacted by the business logic that is
attached to the resource. This rule is the same as when you use the PUT method
to replace a resource.

v All local resource properties are updated or replaced by corresponding property
values from the request. If the resource property is not included in the request,
the corresponding local resource is not explicitly impacted. If the resource
property is included, its value replaces or updates the value in the server. Other
resource properties are deleted by a PATCH and not deleted by a MERGE.

v Reference resources cannot be updated explicitly. However, you can update
properties that refer to the resource, and the properties follow the update model
of literal properties. This rule is the same as when you use the PUT method to
replace a resource.

Example: Updating a literal property

The following method updates the task name property of the work task:
POST http://yourserver/oslc/so/WorkTask/123
x-method-override: PATCH

{
"dcterms:taskname": "Check-out Leaking – Modified for Test"

}

Unlike the PUT method, this PATCH method does not update other properties of
the work task.

Example: Updating a local resource property

The following method updates a specified parts record and deletes other data:
POST http://yourserver/oslc/so/WorkTask/123
x-method-override: PATCH

{
"dcterms:taskname": "Check-out Leaking – Modified for Test",
“spi:parts”: [

{
“spi:partsid": "0000000067",

"spi:quantity": 5
}

]
}

Chapter 3. Working with OSLC resources 21

This method behaves similarly to the PUT method. The system searches for a parts
record with the ID 0000000067. If such a parts record exists, it is updated. If no
match is found, a new parts record is created. All other parts records for this work
task resource are deleted.

Example: Updating and merging a local resource property

The following method updates the resource with the PATCHTYPE header set to
MERGE:
POST http://yourserver/oslc/so/WorkTask/123
x-method-override: PATCH
PATCHTYPE: MERGE

{
"dcterms:taskname": "Check-out Leaking – Modified for Test",
“spi:parts”: [

{
“spi:partsid": "0000000067",

"spi:quantity": 5
}

]
}

A search is made for a parts record with the ID 0000000067. If such a parts record
exists, it is updated. If no match is found, a new parts record is created. Because
the PATCHTYPE header is set to MERGE, the other parts records for this work task
resource are left intact.

Example: Making a conditional update

The following method updates the resource if the ETag value is 1376596202470:
POST http://yourserver/oslc/so/WorkTask/123
x-method-override: PATCH
if-match: 1376596202470

If the ETag value is 1376596202470, the work task resource is updated and an HTTP
204 message is sent.

If the ETag value is not 1376596202470, the server responds with an HTTP 412
Precondition failed message. This message implies that the resource was updated
by some other process and the requesting client has a stale copy of the resource.
The client must perform a GET method on the 123 resource to get a fresh copy of
the resource.

The following table summarizes the result of each update method when applied to different
types of resources.

Method Literal properties Local resources Reference resources

PUT If omit a property,
the property is not
affected.

If omit a property,
the property is
deleted.

If omit a property,
the property is not
affected.

PATCH If omit a property,
the property is not
affected.

If omit a property,
the property is not
affected.

If omit a property,
the property is not
affected.

MERGE If omit a property,
the property is not
affected.

If omit a property,
the property is not
affected.

If omit a property,
the property is not
affected.

22 © Copyright IBM Corp. 2014, 2015

Deleting OSLC resources
You use the HTTP DELETE method to delete an OSLC resource.

Write the HTTP DELETE on the URI of the resource. If the resource business object
has a state transition from the current state of the resource to a null state, the state
of the object changes to null.

If the resource business object does not have a state transition from the current
state of the resource to a null state, the state of the object does not change. You can
modify the business object to include a state transition from the current state to
null. Or you can update the record with an HTTP PUT or HTTP PATCH instead of
an HTTP DELETE and pass the action name to trigger the deletion.

If a resource has child records, the child records are deleted when the resource is
deleted. If a resource has associated records, the association is deleted when the
resource is deleted, but the associated records are not affected.

Working with attachments and binary data
OSLC clients can retrieve, create, and update attachments and binary data through
the OSLC API.

OSLC attachment processing
Attachment processing in OSLC involves processing the attachment itself, which is
an unstructured document, and processing the associated metadata for that
document.

The metadata is described in an AttachmentDescriptor resource RDF.
AttachmentDescriptor resources are always associated with an attachment in a 1:1
relationship.

Creating OSLC attachments

You create attachments by using the HTTP POST method with binary content. Do
not use multi-part HTTP POST requests.

The following example shows an HTTP request to create an attachment to show an
image of a broken part:
POST http://yourserver/oslc/os/oslcwodetail/_abcd123/attachments
Slug: brokenpart.jpeg
Content-Type: image/jpeg
Content-Length: 18124
x-document-description: A broken part
x-document-meta: Attachment

[binary content]

The following example shows the response to the request:
HTTP/1.1 201 CREATED
Location: http://yourserver/oslc/os/oslcwodetail/_abcd123/attachments/1
Link: <http://yourserver/oslc/os/oslcwodetail/_abcd123/attachments/meta/1>;
rel="describes"
Content-Length: 0

The Slug header indicates the file name. You can use the header
x-document-description to describe the attachment. This description is mapped to

Chapter 3. Working with OSLC resources 23

dcterms:description of the attachment descriptor resource. You can use the
x-document-meta header to indicate the folder name for storing the attachment.

Updating OSLC attachments

You can update OSLC attachments by using the HTTP PUT method with binary
content. Do not use multipart HTTP PUT requests.

The following example shows HTTP request to update an attachment:
PUT http://yourserver/oslc/os/oslcwodetail/_abcd123/attachments/1
Slug: brokenpart2.jpeg
Content-Type: image/jpeg
Content-Length: 18124
x-document-description: A broken part
x-document-meta: Attachment

[binary content]

The following example shows the response to the request:
HTTP/1.1 204
Content-Length: 0

To update just the description of the attachment, you can use a PATCH request to
the meta URI, as shown in the following example:
PATCH http://yourserver/oslc/os/oslcwodetail/_abcd123/attachments/meta/1
Content-Type: application/json

{
“dcterms:description”: “Broken pipe”

}

Selecting OSLC attachments

Attachments typically are related resources to structured resources such as work
orders or assets. Attachments also can be associated with child resources. When a
structured resource is fetched, only the link to its related attachment collection is
provided by default. If the consumer expects the attachment details to be in lined
as part of the owning structured resource, use the following query format:
/oslc/os/oslcwodetail?oslc.select=res1,res2,spi:attachments{*}

Deleting OSLC attachments

To delete OSLC attachments, use the following request:
DELETE <attachment uri>

OSLC binary data processing
OSLC clients can query and update binary data by using the OSLC API.

OSLC supports the following two types of binary data:
v TRIRIGA binary data is stored in the dm_content table. Each data element has a

unique content ID, a file name, and a MIME type for data rendering. The binary
field contains the content ID.

v Image data is stored as image files. The image field contains a partial path to the
image file.

24 © Copyright IBM Corp. 2014, 2015

Querying binary data

When binary data is retrieved through an OSLC query or record details page, the
values are presented with an URI. The following example shows a URI with the
binary data information:
http://yourserver/oslc/so/supApp/168867/tririga:supBinary

The client can use the URI to retrieve the actual data. In the HTTP response of the
URI, the body contains the content that is read from the content field of the
dm_content table. The Content-Type header contains the MIME type of the binary
data.

Similarly, when image data is retrieved through an OSLC query or record details
page, the values are presented with an URI. The following example shows a URI
with the image information
http://yourserver/oslc/so/supApp/168867/tririga:supImage

The client can use the URI to retrieve the actual image. In the HTTP response of
the URI, the body contains the image that is read from the image file. The
Content-Type header is a MIME type that is composed of the string image/ plus
the extension of the image file.

Updating binary data

You use a separate HTTP request to update each binary or image property. The
following example shows the format of a request to update binary or image data:
http://localhost:8001/oslc/so/soID/property

In the example, soID is the ID of the smart object that the binary or image
property belongs to. The property identifies the binary or image property that the
value is set to. It takes the regular property form of prefix:sectionName-
propertyName, where sectionName is optional.

The HTTP PUT method is used, and the content-type of the HTTP header contains
the MIME type of the data, as follows:
v For binary properties, the MIME type that is passed in from the content-type

header is carried over to the MIME type of the data. You can pass in a file name
through the optional Slug header.

v For image properties, the content-type must be image type. The type is the
format of the image, such as PNG or JPG. The file name is generated and the
image type is used as the file extension.

Chapter 3. Working with OSLC resources 25

26 © Copyright IBM Corp. 2014, 2015

Chapter 4. Administering OSLC resources

Authentication and authorization support is provided for OSLC services by IBM
TRIRIGA security. You use OSLC logging to debug and to evaluate performance.

OSLC security
Authentication and authorization support for OSLC services is provided by IBM
TRIRIGA security.

Native authentication

The consumer request can provide the user:password values that are base64 encoded
and are in the OSLC HTTP header property.

Explicit login and logout

If the consumer application needs to run explicit login commands, you use the
following request:
GET http://yourserver/oslc/login?USERNAME=username&PASSWORD=password

If the consumer application needs to run explicit logout commands, you use the
following request:
GET http://yourserver/oslc/logout

Authorization

Authorization control is provided at the business object level of the resource. The
security processing of the resource data is then based on both the configuration of
security of the application and the user group of the user who made the request.
When OSLC resources are processed, any object attribute that is configured as
hidden through security is not included in the response to an OSLC request.

Password changes
In order for a client user to be able to change a password, you must create a
MyProfile OSLC resource that is based on the IBM TRIRIGA My Profile business
object.

To support password changes, you must create the MyProfile resource with at least
the Password property defined. You can define other properties to support other
profile changes as necessary.

You gain access to the MyProfile resource in OSLC by using the following URI:
http://yourserver/oslc/so/MyProfile/userId

This URI always returns the current user’s profile, regardless of what user ID is
entered, since a user is not allowed to view the profiles of other users. You can
define query capabilities for the MyProfile resource, but the query results do not
return more than the profile of the current user. You cannot define creation
factories the MyProfile resource.

© Copyright IBM Corp. 2014, 2015 27

You cannot create or delete MyProfile objects through OSLC from the MyProfile
resource.

Use the PATCH method along with the URI to change the profile. Include the
following JSON string in the request to change the password:
{..."spi:Password":"password",...}

The password is in plain text form and is encrypted internally.

Use the HTTP POST method, along with the following headers, in password
change requests:
- x-method-override: PATCH
- PATCHTYPE: CHPWD

The ID of the resource that represents My Profile is set in tririgaweb.properties
file, as follows:

OSLC_MYPROFILE_RESOURCE=MyProfile

Expired passwords
If a password is expired, the consumer application cannot access any OSLC
resource other than the password change URI or the logout URI.

An error message with HTTP status 403 Forbidden is returned. If the system
property OSLC_MYPROFILE_RESOURCE is defined, the JSON error message that
is returned includes a URI that guides the consumer application to the password
change request URI.

Password expiry rules are set in TRIRIGA at ToolsSystem SetupSystemPassword
Setup.

Example: Expired password response
{
oslc:Error:
{
spi:user:
{
rdf:resource: "http://yourserver/oslc/so/MyProfile/13417792"
}
oslc:message: "Password Expired"
oslc:statusCode: 403
oslc:extendedError: "OSLC0054"
}

}

OSLC logging
Logs can record information that can be useful when you debug or evaluate
performance.

Logging is managed in the IBM TRIRIGA Administrator Console. After you log in,
select Platform Logging > OSLC. To turn off logging, clear the OSLC check box.
For more information, see the IBM TRIRIGA Application Platform 3 Administrator
Console User Guide.

28 © Copyright IBM Corp. 2014, 2015

Chapter 5. Troubleshooting OSLC

The following tips can help you troubleshoot issues when you are an OSLC
consumer of IBM TRIRIGA.

Table 1. Tips for troubleshooting OSLC.

Concern Remedy

The resource shape no longer works after
you rename the IBM TRIRIGA report

If you rename the IBM TRIRIGA report that
is defined in a resource shape, it breaks the
resource shape because the defined report
no longer exists. You see an error message
when you preview the query capability or
use the creation factory. The general practice
is to update the resource shape when the
name of the report changes. Also, if either
the module or the business object changes in
the IBM TRIRIGA report, that value must be
updated in the resource shape as well. The
Where Used tab in the report identifies
which resource shape is using the report.

Need logs to debug the OSLC
implementation

Logging is managed in the IBM TRIRIGA
Administrator Console. After you log in,
select Platform Logging > OSLC. To turn off
logging, clear the OSLC check box.

For more information, see the IBM TRIRIGA
Application Platform 3 Administrator Console
User Guide.

Stack trace is thrown in olsc.where If you put single quotation marks in an
oslc.where parameter, you create an invalid
URL. The exception comes from an Apache
filter that occurs before the oslc.where
reaches the OSLC servlet. It is not within
IBM TRIRIGA control.

OSLC explanations for HTTP codes
OSLC uses standard HTTP response codes as error messages. For example, the
HTTP 404 response is normally returned when a web page is not found, and in
OSLC the 404 response code is returned when the resource cannot be found.

Some existing error codes are mapped to HTTP codes by default, but you can map
extra codes as required.

The following HTTP response codes are implemented by OSLC:

HTTP code OSLC explanation

200 Success

201 Success. The response contains a link.

204 Resource successfully updated. There is no response entity.

© Copyright IBM Corp. 2014, 2015 29

HTTP code OSLC explanation

400 Error handling request. This error might be due to the request content
or URI. For example, there might be a business logic validation error on
the server side.

401 Authentication failure.

403 Forbidden. The user password expired.

404 Resource cannot be found or an invalid resource type was provided.

405 HTTP method cannot be used for the resource.

406 Requested representation is not supported.

410 Stable resource page expired.

412 Resource on the client side is stale and must be refreshed from the
server. The conditional update failed because the resource was updated
by another user or process.

500 All other server errors.

The messages support the languages that are supported by IBM TRIRIGA.

30 © Copyright IBM Corp. 2014, 2015

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2014, 2015 31

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

32 © Copyright IBM Corp. 2014, 2015

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Notices 33

http://www.ibm.com/legal/us/en/copytrade.shtml

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the "IBM
Software Products and Software-as-a-Service Privacy Statement" at
http://www.ibm.com/software/info/product-privacy/.

34 © Copyright IBM Corp. 2014, 2015

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy/

Notices 35

IBM®

Printed in USA

	Contents
	Chapter 1. Integrating data by using OSLC
	Chapter 2. Integrating as an OSLC consumer
	OSLC components
	OSLC terminology
	Service providers and service provider discovery
	OSLC namespaces
	OSLC operations and resources
	Resource shapes
	Shape documents
	Number fields
	List and UOM properties

	ETags
	IBM TRIRIGA URIs for OSLC

	Chapter 3. Working with OSLC resources
	Querying OSLC resources
	Query by using GET or POST methods
	OSLC query parameters

	Creating OSLC resources
	Creating records that are associations of primary records

	Updating OSLC resources
	HTTP PUT method
	HTTP PATCH method

	Deleting OSLC resources
	Working with attachments and binary data
	OSLC attachment processing
	OSLC binary data processing

	Chapter 4. Administering OSLC resources
	OSLC security
	Password changes
	Expired passwords

	OSLC logging

	Chapter 5. Troubleshooting OSLC
	OSLC explanations for HTTP codes

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

